mercredi 9 novembre 2011

Évaluation Environnementale Stratégique - Analyse du plan d'action de l'ÉES

Le Comité de l'Évaluation Environnementale Stratégique sur les Gaz de Schiste a mis en ligne une version pour commentaires, de son plan d'action pour la durée de son mandat : Plan de Travail de l'ÉES.  Comme le Plan d'Action contient en fait tout ce que l'ÉES fera et donc toutes les retombées qui en résulteront, il est important de l'examiner avec soin et avec toute la rigueur scientifique requise, ce qui est fait dans ce document.

Dans ce texte seront analysés et commentés plus spécifiquement les aspects géo-techniques, hydrogéologiques et certains coûts qui en découlent. L'analyse se fait en référence aux pages du Plan d'Action de l'ÉES:

p. 10 :  Le Plan de l’ÉES annonce de très belles intentions : "l’acquisition de connaissances scientifiques et techniques permettant de soutenir la réalisation de l’évaluation environnementale stratégique"  mais le contenu de cette ébauche de plan d'action ne contient pas que cela. À la page suivante un des points du mandat "• L’évaluation des impacts et des risques environnementaux et la définition des seuils d’acceptabilité et des méthodes de mitigation appropriées." contient deux expressions qui ne relèvent pas de l'acquisition de connaissances scientifiques ou techniques, et qui hélas prennent une place prépondérante ensuite dans toute l'articulation du plan de travail qui suit. On se penche beaucoup trop sur la problématique d'acceptabilité et les méthodes de mitigation pour favoriser l'acceptabilité à chacune des étapes d’une mise en exploitation du shale d’Utica. L'ÉES doit utiliser ses fonds pour l'acquisition de connaissances scientifiques, cellesrequises pour protéger les intérêts de la population et laisser aux industriels le travail de trouver comment opérer et comment contourner l'opposition populaire; ils ont déjà beaucoup de personnes qui travaillent sur cela.

p.14 : Les principes directeurs sont excellents, notamment,
• … transparence et … diffusion des résultats de toutes les études réalisées.
• … contributions d’intervenants de tous types et de tous secteurs…
• … enjeux environnementaux, économiques et sociaux majeurs en s’inscrivant dans une perspective de développement durable…
• Analyser plusieurs scénarios de développement de la filière, incluant un scénario « aucun développement»...
Notons cependant qu’il suffirait déjà de se référer aux principes de développement durable pour arriver à l'option "aucun développement". En effet, exploiter un combustible fossile non renouvelable ne pourra jamais, même en tordant les principes au maximum, être du développement durable. Ces principes se retrouvent aussi énoncés dans les objectifs (2.1.1 en page 18) et l'option de refus complet de l'exploitation est à nouveau énoncée comme une possibilité. C'est à noter. Mais pour les autres options, celles où l’industrie serait éventuellement autorisée à aller de l’avant, cela ne pourra se faire qu’en suspendant spécifiquement l’application de la loi sur le Développement durable, adoptée en 2006. L’ÉES pourra se pencher sur les motifs d’exception qui permettraient de justifier une telle dérogation extraordinaire. Aux USA, l’industrie a pu démarrer après avoir obtenu des dispenses exceptionnelles aux lois sur la protection de l’eau et de l’air, pour des motifs invoqués d’indépendance énergétique et de sécurité nationale ; ce furent là-bas des concepts considérés importants, mais pas nécessairement transposables ici. L’ÉES devra avoir analysé et trouvé des motifs exceptionnels pour recommander, le cas échéant, la poursuite de l’activité d’exploitation de l’Utica. Évidemment pour justifier une telle recommandation, l’ÉES devra aussi analyser très sérieusement les alternatives énergétiques (bio-méthane, énergies renouvelables, etc), ou encore démontrer pourquoi l’approvisionnement actuel en gaz naturel de gisements conventionnels devrait être impérativement remplacé.

p.21:  Il est extrêmement important de garder en mémoire les 16 principes du développement durable, notamment ceux de prévention et précaution, lorsqu'on analyse une technologie aussi nouvelle et incertaine quant à ses effets à moyen et à long termes. Autoriser l’implantation d’une technologie nouvelle, à risques encore largement inconnus, contrevient directement au principe de précaution. Envisager d’arriver en fin d’exploitation à avoir 20000 conduits reliant la couche de shale d’environ 2000 milliard de mètres cubes nouvellement fracturés, et les nappes en surface, heurte de plein fouet le principe de prévention du risque, car on créerait alors de toutes pièces un tout nouveau risque énorme pour l’alimentation en eau des villes, villages et zones agricoles sur 10 000 Km2.

p.23:  Dans les techniques de recherche on lit : "le Comité examinera l’ensemble des demandes de certificat d’autorisation pour du forage dans le schiste ou pour des travaux de fracturation soumises au ministère du Développement durable, de l’Environnement et des Parcs dans le cadre de l’application de l’article 22 de la Loi sur la qualité de l’environnement afin d’évaluer si elles contribueront à l’acquisition de données scientifiques et techniques utiles à la réalisation de l’évaluation environnementale stratégique".  ATTENTION Ce sera ici un véritable test pour la crédibilité de ce comité ÉES. L'industrie, par la voix d'un de ses plus volubiles représentants, a déjà exprimé publiquement que l'ÉES au Québec est une opération destinée à informer et à rassurer la population; il a ajouté que'" nous n'avons aucune attente qu'en étudiant six puits au Québec dans les prochains deux ans nous obtenions rien que nous ne connaissons pas déjà avec les 40000 puits déjà forés…"(réf. 1). M. Binnion a parfaitement raison sur ce point. Par contre le gouvernement a laissé cette porte ouverte, dès la création de l'ÉES.  Tout forage et/ou la fracturation de nouveaux puits aurait des effets immédiats sur la valeur des permis détenus. En génie minier, quant un forage "prouve" les réserves minières sur une propriété, la cie qui détient les droits miniers voit immédiatement la valeur de ses actions monter. Les cies gazières qui n'ont pas encore valorisé leurs titres miniers de cette façon vont possiblement tenter de le faire dans les prochaines mois ou années. Le prétexte de recherche scientifique constituera le cas échéant une couleuvre difficile à avaler. On verra comment l'ÉES jouera sa crédibilité sur ce point.

p.24:  La crainte exprimée au paragraphe précédent n'est pas futile, car le plan de l'ÉES énonce ceci, dès la page suivante : " les entreprises n’ont pas actuellement en main suffisamment de données d’exploration pour délimiter le gisement gazier et établir son potentiel, deux éléments indispensables" … "il est impératif de déterminer: • les zones d’exploitation et le potentiel gazier de ces zones"   Sans même avoir encore entrepris la pertinence de développer la ressource, l'ÉES annonce qu'elle reprendra à son compte ce type d'étude au profit des entreprises. Or les zones d'exploitation du shale d'Utica sont identifiées et cartographiées depuis des années par le MRNF. Les entreprises font à l'étape actuelle, essentiellement du développement: le forage de puits et la fracturation sont du développement, pas de la recherche, ce que reconnaît pour la première fois, et à juste titre, ce document gouvernemental:






Sous prétexte de délimiter plus en détails le potentiel de chaque zone, on semble vouloir satisfaire les entreprises en leur permettant du développement (forage et fracturation éventuellement).  On peut estimer le potentiel gazier sans faire des nouveaux forages et de nouvelles fracturations qui, comme le dit M. Binnion, ne nous apprendraient rien en termes de connaissances scientifiques. Encore là, l'ÉES jouera sa crédibilité selon les choix qui seront faits. Ils ne sont pas décrits ici plus en détails dans le plan de travail.

p.26-27:  L'ÉES traite ici des eaux souterraines; le BAPE a souligné la grande déficience en cartographie hydrogéologique. Les cartes isopièzes fournissent une information cruciale pour suivre les directions de l'écoulement de l'eau souterraine, son débit, les temps de parcours, les zones de grande vulnérabilité, etc. En cas de fuites et de contamination accidentelle, ces informations sont cruciales. Or ces cartes sont soient inexistantes dans les Basses-Terres, soit inadéquates (sans courbes isopièzes) et datent de plusieurs décennies. La question la plus préoccupante dans l'éventualité de l'exploitation du shale d'Utica est la question du risque que cela faire courir aux nappes phréatiques et aux puits artésiens. La majeure partie des moyens proposés traite dans ce chapitre des eaux sous d'autres aspects, beaucoup plus en rapport avec les besoins de l’industrie: évaluation des quantités requises par l'industrie, questions relatives à la disposition des eaux usées de fracturation, etc. On passe tout à fait à côté de l'acquisition de connaissances scientifiques hydrogéologiques sur les nappes elles-mêmes dans les moyens à mettre en œuvre ; notamment, on ne pense même pas combler les graves lacunes identifiées par le BAPE quant à la connaissance de ces nappes, leur cartographie, les directions, gradients et vitesses d'écoulement, les carte de vulnérabilité, les aires de captages à protéger, etc. Le mémoire des hydrogéologues du GRIES déposé au BAPE (DM103) mentionne aussi qu’il est impératif de connaître les nappes entre la zone superficielle ayant fait l’objet des programmes habituels d’étude et les zones profondes où auront lieu la fracturation. L'ÉES dans ce plan de travail ne prévoit aucune étude pour combler ces lacunes en cartographie hydrogéologie. Pourtant le BAPE a explicitement indiqué qu'aucun puits d’exploitation ne devrait se faire dans les zones où ces données n'ont pas encore été étudiées. L'ÉES doit se recentrer sur cela, plutôt que de se lancer prématurément, et presqu’exclusivement, sur les besoins en eau de l'industrie pour fracturer le shale.

p.28:  Envisager la possibilité d'exploiter l'eau souterraine pour les besoins de l'industrie du gaz de schiste? Quelle idée saugrenue au Québec. Faire des forages pour alimenter d’autres forages entraînera une multiplication des voies de communications des profondeurs vers la surface. Une autre lacune importante dans les connaissances actuelles vient du fait que les projets PACES ne permettent l’acquisition de connaissances que sur une portion superficielle des terrains. Le plus souvent, les études hydrogéologiques se limitent à moins de 100 m sous la surface, soit la zone généralement exploitée pour l’eau souterraine. On sait que l’exploitation des gaz de shale doit se faire à des profondeurs de 1000 m ou plus. La tranche de terrain allant de 100 à 1000 m contient certes de l’eau et d’autres fluides, mais elle n’est présentement pas soumise à des études hydrogéologiques régionales. Ainsi, les échanges dans le socle rocheux entre les eaux souterraines superficielles et les eaux plus profondes, soit dans la zone d’exploitation des gaz de shale, sont des éléments pour lesquels très peu de données sont disponibles. Les données recueillies par l'industrie dans ses travaux d'exploration seraient fort utiles pour mieux comprendre la dynamique hydrique des formations entre 100 et 1000 m. Il s'agit ici de trouver un juste milieu entre la protection des données de l'industrie et une gestion collective responsable de la ressource. D’autres initiatives d’acquisition de connaissances pourraient viser à étudier la dynamique de ce système.
p.28 : Mention aussi de "recours à des technologies alternatives de fracturation n’employant pas d’eau". Laissons les industriels faire la recherche et la démonstration que ces alternatives sont sécuritaires. Cette recherche se fait à grands frais dans le monde ; c’est encore à titre expérimental (fracturation au propane, arc électrique, par exemple) et cela mettra des années avant de s’implanter à plus grande échelle. C’est de la poudre aux yeux que de citer cela dans le plan de travail : il est illusoire de penser trouver une alternative technique spécifique pour le gisement Utica du Québec.

p.29: Pour l’importante question de la protection des nappes, le texte débute en citant une étude " réalisée par l’état de New York conclut que les techniques de mise en place des tubages et de cimentation constituent la meilleure protection pour l’environnement. " Rien n’est plus controversé que cette affirmation, tirée d’une seule référence. Au contraire : "Gas intrusion into cemented wellbores and the resultant leakage to either the surface or porous formation below the wellhead have been persistent problems in the gas industry for many years" (réf. 2) . Les cas de problèmes de fuites de gaz dans les espaces annulaires des puits cimentés constituent en fait la majorité des causes des fuites et cela est reconnu par de nombreux auteurs dans l’industrie (ex réf. : 2, 3, 4, 5 et 6). Et ces problèmes de cimentation des puits sont loin d’être des cas isolés : entre 20 et 60% des puits selon l’age (réf. 3 et la figure plus loin dans le dernier tiers de ce texte).
"… absence presque totale de détection des additifs de fracturation dans les milliers de puits domestiques situés à proximité des puits ayant fait l’objet de fracturation hydraulique." Une autre thèse de l’industrie, adoptée ici sans aucune analyse critique. Les eaux de fracturation migreront lentement, vu la grande profondeur de leur injection initiale, mais par contre le méthane, qui suit les mêmes chemins fracturés se manifeste déjà actuellement de façon systématique sur le terrain. Les contaminations hydriques arriveront plus tardivement. Même ici au Québec, notamment au puits Canbriam à La Présentation, le méthane a déjà traversé la nappe pour arriver en surface, bien loin hors de l’emprise du puits. Les affirmations p.29 sont des thèses contestables prônées par l’industrie ; il est inquiétant de voir l’ÉES en faire son préambule, sans aucune analyse critique, et sans même avoir commencé ses propres études.
Aucun élément dans les tableaux des connaissances à acquérir ne se penche sur l’analyse des nappes qui servent de source d’eau potable pour les communautés. L’ÉES passe tout de suite aux questions touchant l’eau pour les besoins de l’industrie dans l’application de la technologie de fracturation. Avant cette étape, dans la section L’enjeu de la protection de la ressource eau (p.29), on doit minimalement ajouter comme tâches primordiales ceci :
• E3-0 : Cartographie hydrogéologique des nappes phréatiques impliquées avec lignes isopièzes permettant d’évaluer les gradients, les directions de l’écoulement dans les nappes, les zones de vulnérabilité, etc. Ces cartographies seront prioritairement établies dans les territoires où se situent les 31 premiers puits par la mise en place de réseau de piézomètres et puits d’observation dans un territoire assez vaste pour couvrir tout la zone affectée par la fracturation plus cinq kilomètres en périphérie de cette zone. Cette cartographie devrait inclure une analyse physicochimique suffisamment complète des nappes dont le volume excède une certaine valeur.
• E3-00 : Mise en place d’un programme d’échantillonnage périodique de l’eau de la nappe dans ces zones, incluant évidemment la détection des traces de méthane. 
Advenant le cas où l’ÉES envisagerait de recommander le démarrage de l’exploitation du shale dans les Basses-Terres, il deviendra impératif d’ajouter aussi la démarche suivante :
• E3-000 :Mise en place d’un programme pour étendre la cartographie hydrogéologique à tout nouveau territoire où des permis de forage seraient autorisés ; la complétion de ce programme serait un préalable à toute autorisation.

p.29  L'ÉES précise que "l'Association de l’industrie pétrolière (API) publie aussi plusieurs normes et méthodologies pour favoriser un développement sécuritaire de l’industrie". Les normes viennent de l'industrie; proposées par eux, conçues à l’origine pour des puits classiques, rien de bien contraignant. C’est pensé avant tout comme bonnes pratiques pour l'opération à court terme, la sécurité des travailleurs certes, réduite ainsi à la durée limitée dans le temps de leur présence sur le site. Les règles de bonnes pratiques visent avant tout la rentabilité pendant la durée de vie de l'exploitation. Ces normes ne sont pas du tout adaptées pour la durabilité accrue à très long terme qui serait normalement requise spécifiquement pour ce nouveau contexte d’exploitation dans le shale. Ajoutons aussi que rien n’indique qu’elles soient spécifiques à la situation québécoise ; il serait étonnant qu’elles le soient vu le caractère récent de la fracturation rocheuse au Québec (2008).
"…peu d’information est actuellement disponible sur les processus de fermeture temporaire ou de fermeture définitive des puits et la permanence des mesures d’obturation. En effet, bien que la réglementation en vigueur au Québec exige l’obtention d’un permis de fermeture de puits, qui est conditionnelle à son obturation définitive, peu de suivis ont été réalisés sur les puits abandonnés sur le territoire des Basses-Terres du Saint-Laurent"  Les puits de gaz de schiste ne sont aucunement comparables aux anciens puits; de plus la plupart étaient des puits secs, ou d'exploration . Il n’y a aucune commune mesure entre un forage uniquement vertical de 20 cm de diamètre fait pour exploration et qui perturbe donc le roc sur une emprise de cet ordre, versus un puits de gaz de schiste qui lui combine les techniques de forage horizontal et de fracturation de dizaine de millions de mètres cubes pour chaque branche horizontale en vue de modifier considérablement la perméabilité d’un massif de shale. C'est comme étudier les stations services abandonnées pour nous éclairer sur les impacts d'implantation d'une raffinerie... Étudier les puits anciens, d'accord, mais ATTENTION, on ne pourra absolument pas en tirer des conclusions pour les nouveaux puits. L'industrie a besoin des données sur les puits anciens, car ils constituent pour elle une nuisance et un problème purement technique, quand ils se retrouvent dans l'emprise d'une fracturation; cette partie de l'étude semble être une commande pour l'industrie.

p.30• E3-1 : Analyse des normes existantes dans certains États et certaines provinces pour les forages, de la conception à la construction, en passant par la vérification, la fracturation, la complétion et la fermeture.
• E3-2 : Détermination des problèmes de déversements et de fuites rencontrés au Québec par l’industrie des gaz de schiste au cours des dernières années et documenter les causes et les impacts de ces incidents et les mesures prises pour les corriger.
• E3-3 : Recensement et inspection des puits orphelins au Québec.
Dans l'encadré des connaissances à acquérir (E3-1, 2 et 3), aucune mention de l'obtention d'information cruciale sur le devenir des puits après leur abandon. C'est une information pourtant signalée comme inexistante, même pour les puits classiques déjà présents. Recenser les normes appliquées ailleurs n’apportera pas de solution spécifique pour les nouveaux puits, car en raison de l’état de fait et du poids de cette industrie, les normes proposées par l’industrie et entérinées par les États n’ont jamais été conçues autrement que pour des puits dans des gisements classiques. C’est cet état de fait qui a permis l’éclosion de cette industrie nouvelle. En l’absence de normes adéquates, l’exploitation de gisements non conventionnels est apparue rentable. De plus, l’industrie grâce à son pressant lobby a pu obtenir d’être affranchie de plusieurs réglementations environnementales. Étudier ce qui se fait ailleurs viendra peut-être renforcer ici la position de ceux qui réclament les mêmes privilèges indus, mais ce ne sera certainement pas de l’acquisition de connaissances scientifiques. Déterminer les problèmes de déversements et de fuites me semble une entreprise irréalisable en raison du peu d’encadrement de cette industrie jusqu’ici au Québec.  Rappelons que les visites des inspecteurs du MDDEP n’a véritablement commencé que lors du BAPE et qu’encore aujourd’hui, certains puits n’ont toujours pas été visités. Certes, l’industrie est tenue de divulguer les incidents mais le fait-elle ? systématiquement ?  L’étude E3-2 devrait impérativement inclure les incidents répertoriés à l’échelle internationale.

p.31"Par ailleurs, bien que la migration vers la surface à partir des shales de l’Utica soit considérée peu probable à court et moyen terme en raison des conditions géologiques du bassin des Basses-Terres du Saint-Laurent":  Une affirmation tout à fait contestable, un crédo de l'industrie, en désaccord avec l'opinion de chercheurs indépendants. Avant même qu'on ait pu contredire ces thèses simplistes déjà présentées par l'industrie au BAPE, on les retrouve reprises ici, sans nuances, par l'ÉES. Sans cet énoncé, le reste du paragraphe est bon, mais l'encadré des connaissances à acquérir ne contient rien sur les profondes méconnaissances des discontinuités (fractures et failles inconnues) dans la géologie du roc de couverture de l'Utica.  Aucune connaissance à acquérir vraiment? On se contente de prévoir une modélisation de la migration des eaux "en utilisant les intrants propres au bassin des Basses Terres". Euphémisme pour dire qu'on va se contenter des très grandes imprécisions de la carte géologique des Basses-Terres, comme input d'une modélisation. Une modélisation de cette envergure est hautement irréaliste et fantaisiste ;  selon un expert bien reconnu en la matière, dans le cas d'un seul puits  " discretization of an entire representative continuum into discrete blocks is simply impossible because of the number of degrees of freedom involved"(7). Futile ou encore plus inexacte serait la tentative de simulation de l'effet combiné d'une multitude de puits, même dans une géologie hyper simplifiée.

p.32: On mentionne ici trois mesures, mais elles ne se retrouvent pas ensuite dans l'encadré (p.34) de ce qui est à acquérir:
"• Des études de microsismique lors des fracturations hydrauliques effectuées dans le cadre de l’ÉES
(on devrait écrire "lors des fracturations antérieures" - pourquoi requérir à de nouvelles fracturations pendant L'ÉES, pour cela, quand il y a déjà ces données dans les dossiers des compagnies?) 
• Le suivi géochimique lors d’un certain nombre de fracturations, qui inclut les composés gazeux à l’échelle régionale. (même commentaire) 
• La mesure des concentrations naturelles en méthane dans les puits/aquifères situés dans un rayon déterminé autour des forages".  
Ce "rayon déterminé" n'est pas précisé; or cela devrait être sur toute l'emprise de la zone fracturée plus minimalement un autre 2000 m; si on se limite à 100 m autour de la tête de forage, cela ne serait d’aucun sérieux. 





















Ce qui est dans ce cadre est avant tout du travail pour l'industrie; pourquoi l'ÉES par exemple ferait l'analyse des coûts (E4-1) de gestion des eaux de reflux, des possibilités de l'injection? Un gros silence dans ce texte sur le fait que moins de 50% du fluide injecté pour fracturer le roc revient à la surface pendant les quelques semaines qu'on identifie comme période pour leur récupération; plus de 50% de ces "slickwater" sont encore dans le substratum à la fin de cette période. Elles vont remonter, mais sur une plus longue période, pendant laquelle rien n'est prévu pour le suivi. Minimalement, il faut ajouter ceci:
 • E4-4 Analyse des données relatives à la portion des fluides de fracturation qui ne sont pas remontés et modélisation à moyen et long terme de leur mobilité par les mêmes chemins où on a déjà des évidences de migration de méthane, ou encore par d’autres réseaux.
p.35 et p. 36: Est-ce que l'ÉES tient compte du fait que les émissions peuvent survenir ailleurs que près des puits et installations ?  par migration le long de failles notamment dans toute l'étendue latérale fracturés (longues de 1 km?), des fuites peuvent se retrouver à voyager ensuite dans les nappes à grande distance. Comment évaluer ce risque? Rien ci-dessous n'indique qu'on a pensé à cet aspect des émissions.










Il sera très important aussi dans cette analyse de ne pas se limiter à un instantané dans le temps. Les puits sont là pour "l'éternité", même après abandon. Il est impossible d’enlever un puits, encore moins de remettre le shale fracturé dans son état initial. Les données sur les puits classiques (réf. 3), actifs ou abandonnées montrent que les émissions de gaz sont détectées dans des proportions de 20% dans le cas des puits datant de quelques années, mais que ce pourcentage augmente à 40% pour des puits datant de dix ans et jusqu'à 60% des puits pour la tranche datant de 25 ans et plus (figure ci-dessous, réf. 3). 


On note de plus dans cette référence (3) que "Most of the pressure buildup is due to gas, although, in fewer than 1% of all wells, oil and sometimes salt water also flow to surface".Il n'y a pas de statistiques pour les puits de gaz de schiste qui sont encore bien trop récents et pas encore intégrés à ces statistiques ; mais ils sont construits avec les mêmes aciers et les mêmes coulis. Par contre il faut ajouter dans leur cas qu’il y a, comme facteur aggravant, un très grand volume de roc fracturé artificiellement. De plus, la proportion de méthane laissé en place est incommensurablement plus élevée. Ils sont donc susceptibles de produire des fuites nettement plus importantes lors du vieillissement des puits abandonnés et enfouis ; des fuites de méthane et autres gaz évidemment, mais aussi des remontées d’eau sursalée comme mentionné pour les puits classiques, et éventuellement du reste des eaux de fracturation. L'ÉES devra donc ajouter ceci au cadre de la page 36:
• GES1-3 Analyse des quantités de méthane qui possiblement pourra être relâché dans l'atmosphère dans la période de temps qui suit l'abandon des puits, en postulant divers scénarios de durabilité des structures après abandon en regard de la quantité de méthane encore présent dans le gisement au moment de l’abandon.

p.37: Les risques de séismes induits sont identifiés ailleurs dans le monde, surtout avec des cas de disposition de déchets liquides (ex. eau de fracturation) par injection profonde. Si l'ÉES étudie ce risque par rapport à un projet-type (de puits d'exploitation?) et ensuite plus loin propose comme solution de disposition des eaux, la solution de l’injection en forage profond, alors on serait dans une aberration totale. Le risque de séismicité induite doit être fait en rapport avec le point E4-3 page 34 (stockage des eaux de reflux par injection); le risque de séismes et de glissements de terrain dus à un puits de gaz, sont bien significatifs dans le contexte géologique du Québec. On peut mettre ça dans l'étude, mais on peut déjà se demander si c’est mis là, un peu beaucoup, pour avoir à la fin une conclusion rassurante; peut-être donc ici du temps perdu.
"Les risques technologiques: Par ailleurs, tout projet industriel comporte un risque d’accident en fonction de ses caractéristiques. Il importe de bien déterminer les sources potentielles d’accident à chacune des étapes d’un projet type de gaz de schiste, d’en évaluer les conséquences selon divers scénarios. Selon l’importance et l’étendue des conséquences, des mesures doivent être envisagées pour gérer ou réduire le risque à la source ou pour préparer la réponse à un accident potentiel par un plan de mesure d’urgence."Connaissances à acquérir : R2-1 : Analyse des risques technologiques associés aux activités d’un projet type de gaz de schiste." 
Si l'ÉES étudie les risques technologiques uniquement en termes d'intervention par des équipes d'urgence en cas d'accident pendant les activités, ce n'est qu'une faible partie des risques technologiques. C'est le rôle des cies gazières d'étudier et de gérer ce risque pendant leurs opérations, pas l'ÉES. Par contre après l'abandon, tout retombe dans le domaine public, y compris les risques de ces technologies de puits qui se dégraderont forcément dans le temps. Ces risques, ceux assumés par le domaine public doivent être ceux analysés en priorité par l'ÉES. Ces risques sont énormes, car la combinaison des nouvelles technologies qui permet l'extraction du gaz dans le shale est nouvelle, et par définition inconnue et selon toute vraisemblance très à risque.

3.3  L’évaluation des enjeux sociaux pp. 38 à 50  Ce chapitre est bien élaboré et bien louable dans les intentions noblement exprimées. On analysera même les besoins sociaux, en logement, la luminosité, populations autochtones, etc. Partout on cite des nuisances et on dit qu'on étudiera comment les atténuer. Sans vouloir trop nous avancer dans ce domaine d'expertise bien loin de la géotechnique, notons seulement ici qu'une grosse part de "la commande" faite à l'ÉES, vient de ceux (gouvernement et industrie) qui résument le problème à comment convaincre la population, le problème central en étant un de perception, et de nuisances à atténuer.
"L’acceptabilité sociale est fortement tributaire des mécanismes d’information et de consultation mis en place par les différents acteurs du secteur, notamment les ministères et organismes gouvernementaux et les représentants de l’industrie. …
 … opposition nourrie par des expériences problématiques dont certaines ont été fortement médiatisées. Il importe de mieux comprendre de quelle façon et sur quelles bases s’est construite cette opposition ainsi que l’image de l’industrie …" p.48
Là il est devient difficile de croire à l’objectivité scientifique de l‘ÉES quand on constate la proportion démesurée de l'attention porté sur cela, face aux si énormes lacunes signalées précédemment dans la compréhension du fond des problèmes technologiques et de leurs impacts sur les milieux naturels. C'est ma crainte de voir que l'ÉES servent surtout à cela : corriger et orienter différemment les "perceptions" (et ça c'est manifestement une commande pour l'industrie) et si peu aux études scientifiques les plus cruciales.

3.4 L’évaluation de la pertinence socioéconomique de l’exploitation du gaz de schiste pp. 51 à 60
Là aussi, c'est loin de la géotechnique, mais notons seulement cette intention:  Le Québec entend devenir un leader du développement durable (point 5, p 52) ; l'exploitation de combustible fossile est reconnue comme une pratique à laquelle on doit progressivement trouver des alternatives. L'exploitation du shale gazéifère n'est pas et ne sera jamais une avenue qui peut être considérée comme du développement durable; rien n'est moins durable que l'exploitation d'une ressource non-renouvelable,
Connaissances à acquérir :
• EC2-1 : Détail des coûts privés et publics par phase de réalisation et totaux estimés à partir du projet type de gaz de schiste développé au préalable.
• EC2-2 : Projections financières pro forma d’un projet type de gaz de schiste
• EC2-3 : Analyse environnementale du cycle de vie d’un projet type de gaz de schiste
Dans ces évaluations économiques si on se limite aux étapes usuelles: exploration, développement des puits, exploitation et abandon sommaire, on passera à côté du coût le plus important: la gestion du risque des fuites de méthane dans les décennies qui vont suivre. Les gazières ont déjà fait ces "prospectus biaisés" limité aux étapes où elles sont sur le terrain; inutile de les refaire si on n'inclut pas une analyse à long terme. Par exemple au niveau de l'estimation des coûts, juste une question à explorer parmi d’autres: si à Ville Mercier le gouvernement du Québec a en 40 ans dû dépenser des dizaines de millions pour gérer un seul site où la pollution d'une nappe par l'industrie pétrolière (la cause est localisée à 20 m de profondeur - non encore résolue après 4 décennies, et un BAPE en 1994, réf. 8), combien en coûtera-t-il dix ou vingt ans après l'abandon des puits pour faire revenir d'Alberta, ou d'ailleurs, une équipe spécialisée pour identifier (à 2000 m de profondeur) et réparer par exemple un seul puits de gaz de schiste ayant atteint un niveau de corrosion menant à la résurgences de fuites de méthane mettant en danger la sécurité des environs? Question corollaire:  une fois qu'un seul cas de ce genre aura fait les manchettes, combien de millions seront perdus en termes de dévaluation des propriétés avoisinantes?  Question qui tue: quelle proportion des 20 000 puits requis pour extraire toute la ressource, connaîtront des fuites à moyen et long terme et quel en sera le coût pour les fonds publics à ce moment là? (voir la figure tirée de la référence 3 pour un estimé possible). Finalement à estimer aussi, combien de temps tiendraient alors ces nouvelles réparations ? Voilà des questions très pertinentes à mettre dans le mandat de l'ÉES.

3.5 La législation encadrant les projets d’exploration et d’exploitation gazière pp. 60 à 62.
Très bref, mais bon chapitre. La mise en place d'observatoires scientifiques indépendants est une excellente idée émise par le BAPE qui doivent pouvoir agir avec les fonds requis, en toute transparence (publication des données recueillies) et indépendance.
Quant aux règlements, nous soulignons particulièrement la nécessité de révision totale des règles d'abandon des puits. On doit à tout prix éliminer le transfert à l'État (règle actuelle partout) en fin de production de la propriété et du risque. Ce n'est qu'en raison de cet état de fait généralisé, aux USA, comme au Canada, que l'idée même d'exploiter le shale gazéifère a pu démarrer. Avec l'obligation d'assumer la propriété des puits abandonnés, les risques à long terme associés, nécessitant une inspection et un entretien des puits à perpétuité (disons un bail de 99 ans à renouvellement obligatoire en cas de persistance de pression de méthane dans le fond du puits), l'industrie, qui est compétente à calculer ses coûts, n'aurait jamais démarré la construction d'un seul puits.

Notre conclusion sur cette version présentée du plan de travail de l'ÉES est globalement que de beaux principes sont énoncés sur l'environnement, la transparence, la consultation populaire, mais que dans les actions concrètes qui sont listées ensuite, on retrouve beaucoup trop celles qui seront utiles à l'industrie dans son cadre opérationnel pour exploiter éventuellement le shale, y compris l'étude des meilleures stratégies de communication pour favoriser l'acceptabilité sociale et l'apaisement des craintes de la population.  Il est particulièrement renversant de constater la façon dont on envisage d'étudier les nappes et l'hydrogéologie. Il n'y a rien de prévu pour combler les manques flagrants en cartographie hydrogéologique des nappes dans toute les zones visées par l'exploitation éventuelle de l’Utica, mais il y a beaucoup d'emphase sur les besoins en eau de l'industrie de fracturation, des méthodes de disposition ensuite de l'eau contaminée, pour la partie qui remonte (rien sur le 50% qui reste dans le substratum), rien de précis comme investigation systématique des fuites hors de la zone des puits, rien sur la méconnaissance des discontinuités dans le substratum qui seront des chemins éventuels pour des circulations à moyen et long terme dans tout ce grand volume de shale, i.e. 2x10exposant12 mètres cubes (ou 2000 milliards) environ d’Utica modifié de façon irréversible en termes de perméabilité.
Et j'ajouterai un dernier commentaire d’ingénieur :  il n'y a rien dans le plan de travail de l’ÉES qui permettra une évaluation indépendante et critique des technologies nouvelles et très à risques de cette industrie; rien quant à l'examen de la durabilité de ces structures (les puits et les massifs fracturés contenant encore une quantité estimée à 80% du volume de gaz initialement présent (réf. 9) une fois l'exploitation terminée et les puits recouverts de terre. Ces ouvrages que l’industrie laissera en place en fin d’exploitation, ne seront plus alors des puits d’exploitation mais bien des structures permanentes d’ingénierie faites d’acier et de ciment. C’est sous cet aspect que la question doit être analysée par d’autres ; il est impératif que ces ouvrages soient examinés sous cet angle, par des experts hors du champ et des normes internes de l’industrie pétrolière. L’ÉES a le devoir d’obtenir des avis techniques par des ingénieurs civils compétents sur ces milliers de structures qui, après le départ des compagnies gazières, demeureront à jamais implantées dans le substratum dans un territoire de haute valeur historique, agricole et environnementale. 

Références:


2- Marlow 1989, Cement Bonding Characteristics in Gas Wells. Journal of Petroleum Technology, Vol 41

3- Brufatto et al 2003, From Mud to Cement—Building Gas Wells Oilfield Review, Sept 2003, pp 62-76


5- Huerta 2009, Studying fluid leakage along a cemented wellbore Thesis University of Texas at Austin. 81p


7- Dusseault, 2011, Massive Multi-Stage Hydraulic Fracturing: Where are We. ARMA (American Rock Mechanics Association) e-Newsletter, Winter 2011.


9- Office National de l’Énergie, Nov. 2009, L’ABC du gaz de schistes au Canada, 23p.

mardi 20 septembre 2011

Reportage sur les fuites dans les puits de gaz de schiste à Découverte en septembre 2011

Commentaire sur le reportage du 18 septembre 2011 à l'émission scientifique Découverte à Radio-Canada
par Marc Durand, (participant pour un très court extrait dans le reportage, voir à la minute 11:45)

Les problèmes très sérieux associés à la fracturation hydraulique et aux rejets massifs d'eau ainsi contaminée ont monopolisé l'attention des médias dans le dossier des gaz de schiste. C'est une question importante et ce sera toujours un aspect central du dossier, mais on ne doit pas oublier un autre problème tout aussi préoccupant: les fuites de méthane. L'émission Découverte a diffusé un reportage dimanche le 18 septembre 2011 sur ce sujet spécifique. L'équipe de Découverte avait sollicité de moi une entrevue en février 2011 pour la préparation du reportage; je crois donc utile de livrer quelques commentaires sur l'émission présentée.
Le reportage peut être visionné à ce lien : Découverte 18 septembre 2011

Est-ce un reportage qui traite de façon correcte du sujet des fuites de méthane dans les puits gazier de l'Utica? Il y a le fond et la forme: pour le fond, en restreignant la question à l'état actuel des fuites, je pourrais dire oui, le reportage présente un bon portrait* de la question des fuites actuelles. Mais il traite aussi en toute fin, et de façon vraiment très sommaire, la question des fuites possibles dans le long terme, après l'abandon des puits. Là le fond du sujet est hélas mal présenté, car c'est beaucoup trop bref et vraiment incomplet. La cause de ces fuites se résumerait, selon les propos du reporter Jean-Hugues Roy, à la question de la remontée en pression dans les puits; c'est une toute petite partie de la question, car elle est combinée à la dégradation inévitable des coulis et des aciers des puits abandonnés ce qui n'est pas du tout traité dans le reportage. On ne dit pas non plus que l'abandon survient quand le débit devient non rentable et qu'à ce moment là, il reste 80% du méthane qui poursuit sa migration vers les fractures. Il aurait été important d'indiquer que c'est ce qui explique pourquoi la pression remontera dans les puits.

La migration du méthane vers les nouvelles fractures créées est un lent processus géologique qui en est encore à ses tout débuts quand les forages sont bouchés et abandonnés. On ne peut pas parler des fuites sans traiter de cela aussi. Tout ceci faisait partie de l'essentiel de l'entrevue que j'ai donné en février et qui est omis du reportage.

J'ai un gros bémol quant à la forme du reportage; là on sait bien que sur un sujet aussi nouveau et controversé, diverses thèses scientifiques et techniques s'affrontent. On peut parler d'arguments scientifiques pro et anti. Il y a aussi dans le reportage, du temps des entrevues, et des commentaires, disons ni pour, ni contre; dans ceux-là, je range les propos des employés du gouvernement, les propos du narrateur Jean-Hugues Roy, les animations de l'équipe d'infographie 3D de Découverte, toujours de haute qualité, etc.

Côté pro-gaz, on a donné tout le temps requis à la géologue de Talisman pour temporiser et minimiser toutes les questions traitées sur le sujet : avec six interventions pour une durée cumulative de 1 minute 40 sec, Mme Molgat défend abondamment le point de vue des cies gazières, comme quoi, les fuites, il n'y a rien là, pas de quoi s'inquiéter, on fera mieux la prochaine fois, etc. Talisman Energy avait émis une protestation après la diffusion de l'émission Découverte du 14 novembre sur les gaz de schiste; il serait outrecuidant qu'ils protestent à nouveau cette fois-ci, avec le traitement très généreux reçu dans ce deuxième reportage.

Je me range du côté de ceux qui dans le débat apportent des arguments scientifiques contre cette industrie. Je ne ferais pas l'affront à mon collègue Maurice Dusseault de le ranger dans un camp ou l'autre, sans avoir son avis. J'ai apprécié dans le reportage qu'on lui ait donné du temps de bien expliquer ce qu'est un coulis; c'était visuel et bien fait. On omet simplement de préciser que les coulis comportent aussi en plus de l'eau et du ciment, des additifs pour le rendre plus fluide, et pour bien d'autres choses. Il l'a sûrement précisé, mais cela n'a pas été retenu dans les extraits de son entrevue. Monsieur Dusseault a beaucoup travaillé pour l'industrie des hydrocarbures de l'Alberta et je crois qu'il a fait une présentation objective dans l'extrait diffusé.

Comme temps de reportage du côté des antis, on montre des séquences d'une manif et on interroge, comme c'est obligé, Dominic Champagne. Je n'ai rien contre M. Champagne, au contraire je l'apprécie hautement, mais encore une fois, ceux qui verront ce reportage pourront dire que d'une part, l'industrie présente l'opinion d'experts et d'autre part, les contres présentent celles d'artistes et de gens ordinaires émotifs. L'équipe de Découverte n'avait pas comme objectif premier de présenter un reportage avec une optique de monter à parts égales, les arguments pour et les arguments contre, je le reconnais et je le conçois très bien. Mais le sujet étant ce qu'il est, c'est la façon dont c'est perçu dans le public, depuis qu'il est devenu si controversé. Découverte a le prestige d'une haute autorité dans la diffusion de ses reportages scientifiques.

À Découverte, j'aurais aimé qu'on se restreigne plutôt à des entrevues de scientifiques ou d'experts qui ont des arguments scientifiques: il y en a plus de 150 au collectif scientifique mis sur pied à l'Université (site du Collectif Scientifique), ce n'est pas le choix qui manque. Je suis donc désolé de constater que la contre argumentation repose que sur les deux très courts extraits, où je m'exprime dans ce reportage. Je dois avouer que je suis déçu; mon pas parce qu'on n'a retenu que 25 secondes (11s + 14s) d'une entrevue de 45 minutes. C'est court, beaucoup plus court que le temps donné à l'experte de Talisman, mais je ne retiens pas cela en termes de durée. Non je suis déçu du choix de nʼavoir retenu pour moi que deux extraits, où je fais deux énoncés qui parlent du coût, ce qui n'est pas mon domaine de recherche. J'avais longuement exposé des éléments géotechniques pour exposer l'origine et l'évolution des fuites actuelles et pour les fuites futures, la dégradation des coulis et des aciers dans le temps, dans l'Utica qui continuera à libérer du méthane pour des siècles, etc. On a retenu pour le reportage que deux bouts d'entrevue, où les opposants auront le loisir de dire que je fais des affirmations non étayées et que parle d'impacts (coûts) hors de mon champ de compétence, qui est avant tout l'ingénierie géotechnique. Elle étaient pourtant bien étayées ces deux conclusions, mais comme je l'ai expliqué dans le premier paragraphe, la présentation scientifique du volet fuites à long terme est là mais vraiment trop tronquée dans le reportage, ce qui fait apparaître mes deux extraits bien peu scientifiques.

Ce que l'auditoire retiendra, c'est que les fuites existent, mais le gouvernement les surveille, sans trop s'inquiéter; les représentants des cies ajoutent que ce n'est pas grave du tout, qu'ils vont les réparer et que ce sera mieux la prochaine fois. Monsieur Paquin du MENVIQ ajoute que finalement, il n'y en a que deux fuites significatives sur les 19 cas du début du reportage. Pour le long terme, mes déclarations paraissent alarmistes, car privées de leurs explications préalables. Elles arrivent isolées, en porte-à-faux par rapport aux données scientifiques présentées dans le reportage. Des déclarations sensationnelles isolées ainsi, ça peut convenir pour faire du sensationnalisme, mais cela ne cadre pas selon moi avec la rigueur scientifique qu'on a toujours à Découverte. Le reportage présente ensuite après moi, à nouveau, la géologue de Talisman, une sixième fois dans ce reportage, laquelle vient conclure que les fuites c'est pas grave du tout, il y en a partout, un peu comme celles à la station d'essence pour la voiture.

Le reporter termine en ramenant la problématique de tout cela à une question de culture (sic!) et une question de perception différente au Québec. Ici, gros danger, car justement l'industrie véhicule sur de multiples tribunes que, c'est normal ces premières perceptions d'inquiétude, car c'est nouveau ici, mais quand on aura l'exploitation sera bien implantée, alors là on rejoindra sans doute la même culture universelle (celle du Texas et de l'Alberta?) dans la perception de l'exploitation des gaz de schiste. Je dois préciser que le reporter de Découverte ne dit pas cela, mais s'aventurer sur ce terrain dans reportage, qui avait si peu de temps à consacrer à des témoignages d'experts, était ouvrir la porte à toutes sortes de perceptions, dont celle-là. 

La question de culture différente au Québec, certes ça existe si on souhaite analyser cela au point de vue sociologique, mais pourrait-on dans un reportage traitant d'ingénierie de forage et de données scientifiques, laisser cela de côté pour une autre émission et ne pas noyer encore une fois le poisson avec la même sauce? Le méthane qui du fond du puits remonte vers la surface, ne sait pas et s'en fout qu'en haut en surface il y ait une culture différente. Le méthane va remonter selon les lois universelles de la physique, tout simplement. Peut-on garder la discussion sur ce terrain dans une émission scientifique?

La durée du temps qu'on m'a accordé n'est pas la cause de ma déception. Ce qui me déçoit, c'est le choix d'avoir mis uniquement en opposition à ceux de l'industrie deux très courts extraits choc, en les coupant de l'argumentaire scientifique et technique indispensable, comme unique présentation des opinions des scientifiques qui s'opposent, comme moi, à l'industrie des gaz de schiste. Je souhaite que ces commentaires soient perçus comme constructifs, car je crois toujours que Découverte joue un très grand rôle dans l'indispensable vulgarisation scientifique au Québec, y compris l'émission du 18 septembre dernier, qui malgré toutes mes critiques, était fort intéressante.  Elle apportait notamment une bonne quantité de données que l'équipe a recueillies,  le tout rendu dans une très belle présentation. Il faut rappeler que notre télévision d'État est la peu près la seule dans le monde à avoir produit ainsi deux émissions scientifiques qui soulèvent un début de questionnement sur l'industrie des gaz de schiste.

------------------------------------
 * Un détail certes, il y a deux petites erreurs dans le commentaire du journaliste: J-H Roy explique les fissures annulaire de retrait quand le coulis durcit; il dit que "l'eau s'évapore". À 1000 ou 2000m sous la nappe, l'eau est partout et ne s'évapore certainement pas. Le coulis durcit dans une réaction chimique où il y a rétrécissement du volume solide, mais tout cela se passe dans l'eau, omniprésente dans ces vides et fractures. Précédemment il dit aussi "quand le ciment sèche, il rétrécit ". C'est ici aussi la même erreur, que fait souvent le commun des mortels, de percevoir le durcissement du béton ou du coulis de ciment comme un "séchage". Rien n'est plus faux: ce sont des réactions chimiques qui demandent de l'eau qui mènent à la prise et au durcissement du béton, comme du coulis. En fait si le mélange sèchait avant de faire prise, on se retrouverait avec de la poudre de ciment sans aucune résistance.

Dans les entrevues données par la géologue M. Molgat, il y a par contre beaucoup d'autres faits que j'ai relevés et qui méritont une réponse et des commentaires dans un document en préparation. Juste un exemple: l'experte de Talisman Energy Inc  explique ainsi textuellement dans le reportage les fuites au puits de Leclercville:  "c'est entre deux coffrages en acier inoxydable, le ciment qui est là, localement peut-être une colmatation qui n'est pas à 100%,  et les gaz peuvent , euh bon, créer un chemin jusqu'à la surface..."  Colmatation (pour dire colmatage), coffrages (pour dire tubage), parler d'acier inoxydable c'est faux, c'est de l'acier ordinaire, qui rouille en surface que les gazières utilisent partout et de tout temps. Découverte avait aussi présenté Mme Molgat dans l'autre émission sur le sujet, celle du 14 nov.2010; Mme Molgat faisait aussi un triste traitement à la vérité scientifique; j'ai commenté cela à l'époque dans mon tout premier texte: Voir le 3e paragraphe .   Cette experte a été nommée par le Gouvernement pour sièger à l'ÉES, cette commission d'experts "indépendants" qui en principe doit rendre un rapport qui va être déterminant pour les générations futures. Ça promet !

vendredi 17 juin 2011

L’EXPÉRIMENTATION - La durée de vie des structures -

Ce document est complété par une 2e vidéo Gaz de schiste 102 (disponible en HD 720p) à ce lien:         Gaz de schiste 102 - l'Expérimentation

Note préliminaire: ce 4e texte fait suite et complète le document  Exploitation de puits gaziers classiques vs exploitation par forages à grande extension horizontale et fracturation hydraulique mis en ligne le 25 février 2011, et une vidéo Gaz de schiste 101  également sur ce site. L'EXPÉRIMENTATION analyse les facteurs géotechniques liés à la durée de vie des structures et l'impact que risque d'avoir des décisions totalement improvisées et irréfléchies, dans une voie où le gouvernement semble vouloir persister, avec comme information privilégiée, celle des lobbyistes de l'industrie.

Une problématique très importante, mais méconnue de l’exploitation des shales gazifères, se rapporte à ce qu’il adviendra des puits après l’exploitation. Cette question doit être analysée très soigneusement, car il y a un élément essentiel qui  prend une importance considérable dans cette industrie nouvelle : le fait que la fracturation met en branle la mobilisation du méthane dans tout le volume de l’unité géologique. En même temps, on ne va extraire qu’une faible proportion de ce gaz. L’extraction ne se fait que pendant quelques années, mais la migration du gaz amorcée par la fracturation se poursuit pendant un temps au moins mille fois plus long. Le débit est très élevé initialement, mais il décroît sous un seuil où ce n’est plus jugé rentable de poursuivre l’extraction.

Dans un gisement de gaz classique, c’est-à-dire un gisement où le méthane s’est accumulé dans un réseau de fractures naturelles, on arrive à extraire 95% du gaz (réf.1). C’est parce que le roc qui forme ce réservoir naturel est très perméable et que pendant des temps géologiques, i.e. des millions d’années, le gaz a pu migrer vers cette zone.  Comme le gaz est déjà arrivé depuis longtemps dans la zone naturellement très perméable, on arrive donc assez facilement à l’extraire en quasi-totalité.

Ce n’est absolument pas ce qui arrive dans le cas où on tente d’extraire le gaz encore dispersé et toujours emprisonné dans un roc extrêmement peu perméable. On peut certes créer des fractures dans le shale par fracturation hydraulique, ou par une autre technique de fracturation. Le résultat est le même :  chacune des nouvelles fractures constitue une petite zone de grande perméabilité dans le shale. Le méthane et les autres fluides présents vont migrer vers ces fractures. Ce qui a pris des temps géologiques dans les gisements classiques, va se reproduire exactement de la même façon.  Comme toutes les nouvelles fractures sont créées pour ainsi dire ensembles, à ce nouveau temps zéro, on obtient un débit intéressant au départ. Mais il s’estompe très vite. Plus des trois quarts du méthane (80% selon l’Office National de l’Énergie- réf.1) demeurent en place à la fin de l’exploitation. Ce gaz ne se libérera qu’après la fin de l’exploitation, donc quand les puits seront abandonnés. C’est très différent et cela pose la question essentielle : ce qu’il adviendra des puits après l’exploitation face à cette énorme quantité de méthane qui cherchera à trouver un chemin vers la surface. On crée avec la fracturation du shale et avec une technique d’extraction qui a un si piètre rendement de 20%, un énorme problème, totalement nouveau, pour lequel on a actuellement aucune réponse. Comment se comporteront les puits, c’est beaucoup plus précisément en fait, se demander comment se comporteront les éléments mis en place dans la courte étape de la fermeture et l’abandon des puits. Pour obturer un puits, l’industrie, en se conformant aux pratiques en vigueur, dépense entre 0,1 et 0,3% du coût du puits; c’est très peu et la durée de vie de ces obturations est à peu près inconnue, comme celle du reste de la structure des puits d’ailleurs.

Une expérimentation théorique: enterrer 20 000 bombonnes de propane dans un grand champ. Disons qu’au départ chacun de ces contenants contient 80% de remplissage résiduel, pour établir un parallèle avec les puits de gaz de schiste. On sait que ces bombonnes ont une durée de vie qui n’est pas éternelle; les fabriquants recommandent d’ailleurs de ne jamais remplir une bombonne datant de plus de dix ans.

Dans le champ, chaque année on en examine un échantillon et on porte en graphique le nombre de celles qui ont cédé.  On pourrait noter au moins deux critères: celles qui fuient manifestement un peu et celles qui sont totalement corrodées, fissurées, ou même qui ont explosé (un petit nombre sans doute des ruptures possibles). Prenons le cas des ruptures complètes mises en graphique ci-dessous:


Figure 1 - Distribution normale en forme de cloche des ruptures qui surviennent en fin de vie technique d’une structure, ou d’un ouvrage de génie civil.

On obtient une distribution classique en forme de cloche. La durée de vie moyenne des bombonnes se situe dans la figure à 14 ans, au moment où se présentent le plus grand nombre de cas.  Mais on constate que sur les 20 000, il y en a quand même des ruptures dès la 2e année. À l’autre extrémité, certaines en petit nombre durent plus de 25 ans. Deux constatations à souligner: 

La durée de vie de 14 ans est une valeur qui exprime une probabilité statistique; la rupture dans un cas unique peut être plus faible ou plus élevée, mais la probabilité la plus forte se situe entre 10 et 18 ans.

- 100% des bombonnes finissent un jour par céder si on laisse au temps, le temps de faire son oeuvre. Ça, c’est le plus inquiétant !

Dans la vraie vie si quelqu’un fait cette expérimentation, la sécurité civile va probablement intervenir, après les premières explosions. Les autorités vont clôturer le champ, mettre de interdictions d’accès, faire une étude d’intervention, puis finalement confier les travaux de “déminage” à une firme spécialisée, laquelle devra prendre de coûteuses précautions pour extraire une à une les bouteilles corrodées et très dangereuses à manipuler.  Entre temps, le dangereux fou est disparu aux Bahamas, la facture très élevée de ce gâchis va être payée par la collectivité.

Vous croyez que cette histoire d’expérimentation est tordue et farfelue?  Elle est sans doute tordue, mais bien moins en tout cas que celle que veulent entreprendre les compagnies gazières avec l’appui du gouvernement du Québec, dans 10 000 Km2 de la plaine du St-Laurent.

Sans connaître la durée de vie des puits, sans aucune évaluation des conséquences à long terme de leur rupture inéluctable, on prévoit installer 20 000 puits de gaz de schiste.  Il n’y a pas que les puits, il y a aussi 20 000 fois un très gros bloc de roc fracturé (représentés en vert dans la figure 2); entre 50 et 100 millions de m3 de shale modifié de façon irréversible pour chacun des 20 000 forages.


Figure 2  - Par grappes de 6 puits ou plus, on envisage d’extraire le gaz de toute la couche de shale d’Utica; avec entre 1 et 3 puits/ Km2 - image extraite du vidéo Gaz de schiste 102

De plus dans le cas des puits, ce n’est pas un seul champ qui est le lieu de l’expérimentation, mais bien une très grande partie de la plaine du St-Laurent, entre Montréal et Québec, dans le secteur patrimonial comptant les très beaux villages et paysages aménagés par les générations précédentes. Les tours de forage, les torchères, les compresseurs et les camions vont maintenant s’inscrire dans ce paysage.
Ce que va produire cette transformation radicale, on en a une petite idée pour ce qui se passe en surface : pollution des nappes par l’activité de l’industrie, lourde pression sur les infrastructures agricoles et villageoises, baisse radicale de la qualité de vie et de la valeur des terres au voisinage des structures industrielles, etc. 

Mais plus en profondeur, on en sait très peu de chose. C’est la raison pour laquelle je désigne toute cette opération par l’expression l’EXPÉRIMENTATION, le titre de ce texte. J’affirme de plus que c’est une expérimentation déraisonnable, pire que celle du fou qui a enterré 20 000 bombonnes de propane dans un champ. Ce n’est pas une petite quantité de combustible (4,5m3 en volume de gaz pour un réservoir de propane), mais bien 10 000 000 fois plus à chaque emplacement. La seule différence positive est que le méthane du roc va se dégager lentement et progressivement, alors que dans l’exemple des bombonnes, il est libre dès le départ. Par contre, il aura été possible d’enlever les bombonnes de propane du champ, mais il ne sera jamais possible d’enlever un forage  du roc, encore moins les millions de fractures injectées de sable. C'est une opération irréversible et ses effets sont là à jamais.

Prenons une échelle de temps de l’ordre de la durée de vie des puits une fois qu’ils seront abandonnés. Ce qui est connu scientifiquement, c’est que le méthane qui reste encore dans le massif de shale, environ 80%, va continuer le processus géologique amorcé lors de la fracturation. À la fin de l’exploitation d’un puits, 20% seulement du gaz est libéré et extrait; il n’est plus rentable de continuer d’exploiter un puits après quelques années, car le débit est jugé devenu trop lent. Un puits fermé définitivement retombe dans le domaine public. C’est là que l’expérimentation commence, car on entre dans un domaine totalement inconnu. Les données de départ de l’expérience sont  assez claires cependant pour tenter de prédire ce qui se passera selon la plus grande probabilité:

1- Le shale contient encore 80% de son gaz, qui continue à vitesse lente à se libérer selon une courbe de diminution exponentielle. Des courbes de décroissance sont publiées (réf.2) pour les shales en cours d’exploitation aux USA.

2- Les puits fermés et abandonnées sont bouchés, en profondeur par du béton et en surface par une plaque d’acier. Entre le tubage et le roc foré, c’est du coulis poreux, celui mis en place lors de la construction du puits, qui sert toujours de bouchon. Même dans les puits neufs, ce coulis à l’extérieur du tubage a souvent montré des défauts laissant passer des fuites de gaz dans de nombreux cas. Pour traiter ces défauts, l’exploitant a dû perforer l’acier du tubage en plusieurs endroits en profondeur. Tous ces défauts vont être les parties de l’ouvrage qui vont se dégrader en premier. Les causes de la dégradation des puits et des fuites et ruptures qui en résultent sont bien connues (réf.3, et 5) dans le cas des puits classiques, i.e. ceux qui ne sont que des forages verticaux. Ces mêmes causes vont agir dans les nouveaux puits, mais avec plus d’ampleur.

3- Dans le cas plus critique des puits de gaz de schiste, il faut ajouter l’effet non évalué de la  fracturation horizontale jusqu’à 1000m (et plus ?) en extension du puits vertical. Quel est l’impact de l’environnement de shale ayant subi la fracturation hydraulique sur la durée de vie de l’acier et du coulis, les deux éléments structurels principaux des puits. Le shale auparavant étanche, est rendu un million de fois plus perméable par l’opération de fracturation; il libère certes du gaz, mais aussi beaucoup d’éléments emprisonnés dans le roc; radium, éléments minéraux en très haute concentration (salinité locale dans les eaux de ces massifs lorsque détectée : huit à dix fois celle de l’eau de mer). Tous ces éléments s’ajoutent à ceux du cocktail chimique du fluide de fracturation, dont le plus gros volume reste dans le roc fracturé.

4- Dans le cas plus critique des puits de gaz de schiste, il y a eu aussi des cycles de forte pression pendant la fracturation, et d’autres pendant l’exploitation.  L’impact sur la durée de vie des aciers et des coulis est certainement de réduire encore un peu plus leur durée de vie technique.

Avec ces quatre éléments, on peut déjà raisonnablement conclure que le facteur  1 va permettre la remise en pression des puits bouchés. La pression et la quantité de gaz faisant pression sur le bouchon vont aller en augmentant avec les années (réf.4). Les facteurs 23 et 4 qui se rapportent aux puits indiquent qu’ils vont se dégrader lentement, mais sûrement. Quelle est la durée de vie technique moyenne des puits dans cet environnement souterrain, qui n’a pas encore d’équivalent étudié dans le monde? C’est la donne inconnue de cette équation. On ne peut donc pas prédire le devenir de chaque puits dans le temps, en termes de date pour l’apparition de fuites majeures. C’est là que l’expérimentation en vraie grandeur débutera.



Figure 3  - Les participants volontaires et involontaires de l’EXPÉRIMENTATION.

Je dis que cette expérimentation ne doit pas se faire, et en tant qu’ingénieur, je ne signerais absolument pas les plans de l’ouvrage représenté à la figure 2; surtout si ce type de structure est destiné à être implanté en 20 000 exemplaires dans un territoire habité (figures 2 et 4).  Il y a actuellement dix-huit puits avec la fracturation; c’est déjà dix-huit de trop. Il n’y a aucune solution technique pour revenir en arrière. Qu’on le veuille ou pas, nous allons entrer dans l’expérimentation avec ces 18 structures, car elles sont là pour l’éternité, mais il est impératif de ne pas ajouter d’autres fracturation. Il faut aussi éviter à tout prix d’entrer dans le plan d’affaire concocté par l’industrie avec l’accord du gouvernement, et modifier ce qui est présenté à la figure 3;  la modification la plus importante est de ne pas autoriser la mise en application de la norme actuelle menant à la fermeture des puits, qui implique un transfert de propriété  (compagnies -> collectivité). Ceux qui ont construit les 18 puits doivent être y être liés pour la durée de l’expérimentation, c’est à dire minimalement pour  99 ans, renouvelable tant et aussi longtemps que le méthane poursuivra le processus géologique de migration (ça peut être très long !). Je sais bien que très peu de firme subsistent au travers des siècles, mais imposer cette règle va régler le cas du gaz de schiste : aucune compagnie de va se lancer dans d’autre fracturation avec ça.

J’ai présenté l’exemple des bombonnes, parce qu’il permettait de comprendre la question de durée de vie technique. Cela s’applique aussi à des puits, à la structure du puits, comme à la structure d’obturation ajoutée en fin d’exploitation. Ça tient combien de temps ce « bricolage », c’est la question qu’il faut se poser. Le terme « bricolage » pourra sembler exagéré pour plusieurs experts ici, car ces méthodes sont celles qui sont appliquées, réglementées et qui constituent actuellement la règle de l’art. Cependant en tant qu’ingénieur, je crois qu’appliquer aux nouveaux puits des procédures établies pour des forages classiques, cela devient bien un bricolage, car c’est tout à fait inadapté.

Au départ, on a un ouvrage conçu et optimisé pour extraire du gaz (figure 4A) – le puits d’extraction avec fracturation sur 1000 mètres à l’horizontale – on tente ensuite en fin de vie utile une transformation en une structure destinée à la fonction diamétralement opposée, c’est-à-dire retenir tout le méthane qui reste – le même puits et la fracturation de 50 millions de mètres cubes + un bouchon de béton + une plaque d’acier soudée + quelques autres ajouts (figure 4B).  Cette procédure est actuellement la norme, pour laquelle les compagnies dépensent habituellement moins de 1% du coût total de l’ouvrage. Aucune règle ne les oblige à plus; aucune compagnie ne peut à la fois être plus vertueuse que ses concurrentes et rester en affaire bien longtemps. Les règles de fermeture des puits horizontaux avec fracturation intensive du shale gazier sont totalement à repenser et reformuler.


Figure 4A : Puits d’exploitation en fin d’opération   -   B : structure convertie en puits d’obturation sur un réservoir de 50 000 000 m3 de méthane, encore présent.

En fonction des lois au Québec, les plans de forage et d’obturation des puits échappent à la loi des Ingénieurs. Donc ces ouvrages, avec les règles actuelles, peuvent être implantés sans qu’un ingénieur en approuve les plans. Je ne connais pas d’ingénieur qui accepterait d’engager sa responsabilité professionnelle pour garantir, à l’étape de l’abandon, l’étanchéité dans une durée infinie, d’un réservoir souterrain de 50 000 000 m3 de méthane avec les plans de forage actuels, des ouvrages qui de plus seront sans entretien, sans inspection, et masqués sous un site oblitéré en surface. On compare sur la figure 4 les millions dépensés dans la structure d’extraction, qui a une vie utile qui se compte en années - versus moins de 1% de ce budget pour une structure ajoutée qui modifie la première de façon sommaire tout en visant à modifier sa fonction de façon totale ; cette combinaison devra durer des siècles.

Mais cela se fait ailleurs, peut-on m’objecter. Même si ailleurs un fou décidait d’entreprendre l’expérimentation des bombonnes, ça ne la rendrait pas plus raisonnable de la répéter ici. Nulle part dans le monde, on est rendu à l’étape « de l’après » dans le cas de l’industrie des shales gazifères. Aux USA on a lancé cette industrie il y a moins de dix ans; on n’est pas dans la période où l’expérimentation débutera réellement. Déjà cependant dans la période actuelle d’exploitation là-bas, on observe une forte augmentation de problèmes de sécurité liés à des puits en activité; ce sera pire quand ils entreront dans l’abandon. Plusieurs états aux USA sont en train de réexaminer ce dossier. Chacune des nouvelles études, apporte un éclairage nouveau sur cette industrie lancée dans la précipitation là-bas aussi.  Chaque contexte géologique est différent certes, mais lancer ici l’expérimentation en zone habitée, compte tenu de ce qui est probable comme résultats, est tout à fait irréfléchi.

Marc Durand, doct-ing en géologie appliquée
Professeur retraité, dépt. Sciences de la terre, UQAM

Références citées;
1- Office National de l’Énergie, Nov. 2009, L’ABC du gaz de schistes au Canada, 23 p.

2- AEberman,2010.  Shale Gas—Abundance or Mirage? Why The Marcellus Shale Will Disappoint Expectations, Shale Gas—Abundance or Mirage

3- Maurice B. Dusseault, 2000, Why Oilwells Leak: Cement Behavior and Long-Term Consequences, SPE, Porous Media Research Institute, University of Waterloo, Waterloo, Ontario; Malcolm N. Gray, Atomic Energy of Canada Limited, Mississauga, Ontario; and Pawel A. Nawrocki, CANMET, Sudbury, Ontario, SPE International Oil and Gas Conference and Exhibition in China held in Beijing, China, 7–10 November 2000

4- Durand M, 2011, Exploitation de puits gaziers classiques vs exploitation par forages à grande extension horizontale et fracturation hydraulique, 25 février 2011, Exploitation de puits gaziers classiques vs exploitation par forages à grande extension horizontale

5- Kent Caudle, 2011, Mitigating Corrosion in the Oil and Gas Industry. Well Servicing Magazine, January/February 2011